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Recall: Span(S) is the set of all linear combinations of vectors in S.

Examples:

(1) Span({〈1, 0, 0〉, 〈0, 1, 0〉}) = {〈a, b, 0〉 ∈ R3 | a, b ∈ R};
(2) Span({〈1, 0, 0〉, 〈0, 1, 0〉, 〈5, 11, 0〉}) = {〈a, b, 0〉 ∈ R3 | a, b ∈ R};

Note that Span({〈1, 0, 0〉, 〈0, 1, 0〉}) = Span({〈1, 0, 0〉, 〈0, 1, 0〉, 〈5, 11, 0〉}),
since 〈5, 11, 0〉 ∈ Span({〈1, 0, 0〉, 〈0, 1, 0〉}). I.e. the vectors {〈1, 0, 0〉, 〈0, 1, 0〉, 〈5, 11, 0〉}
are linearly dependent.

Section 1.5 Linear Dependence and Independence.

Let V be a vector space over a field F and S ⊂ V .

Definition 1. S is linearly dependent iff there are vectors v1, ..., vn in S
and scalars a1, ..., an not all zero such that

a1v1 + a2v2 + ...+ anvn = 0.

Definition 2. S is linearly independent iff whenever

a1v1 + a2v2 + ...+ anvn = 0

for vectors v1, ..., vn in S and scalars a1, ..., an, then a1 = a2 = ...an = 0.

Note that the empty set ∅ is linearly independent.

Examples:

(1) In R3, the set {(1, 1, 1), (2,−1, 0), (4, 1, 2)} is linearly dependent since

2(1, 1, 1) + (2,−1, 0)− (4, 1, 2) = (0, 0, 0).

(2) In R3, the set {(1, 0, 0), (0, 1, 1), (0, 1, 2)} is linearly independent.
(3) In P (F ), the set {1, x, x2, ..., xn, ...} is linearly independent.
(4) In Fn, the set {e1, ..., en} is linearly independent, and in Mk,n(F ),

the set {Eij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} is linearly independent.

Problem. Prove that in P2(F ), the set {1+2x+x2, 1+x, 1+x2} is linearly
independent.

Proof. Suppose that a(1+2x+x2)+b(1+x)+c(1+x2) = ~0. Then, regrouping

the terms on the left hand side, we get (a+b+c)+(2a+b)x+(a+c)x2 = ~0.
So,

• a+ b+ c = 0,
• 2a+ b = 0,
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• a+ c = 0

Solving this system, we get that a = b = c = 0.
�

Remark 3. Let V be a vector space and S1 ⊂ S2 ⊂ V .

(1) If S1 is linearly dependent, then S2 is linearly dependent.
(2) If S2 is linearly independent, then S1 is linearly independent.

Also note that:

(1) If x 6= ~0, then {x} is linearly independent.

(2) {~0} is linearly dependent, since 1~0 = ~0.

(3) If ~0 ∈ S, then S is linearly dependent.

Now let us look at the cases of two vectors and then of three vectors:

Lemma 4. Let x, y, z be all nonzero vectors. Then

(1) {x, y} are linearly dependent iff they are multiples of each other. I.e.
x = cy for some scalar c. (The proof will be on the homework)

(2) {x, y, z} are linearly dependent iff x and y are multiples of each other
or z = ax+ by for some scalars a, b.

Theorem 5. Suppose that S is linearly independent. Then S∪{v} is linearly
dependent iff v ∈ span(S).

Proof. For the first direction, suppose that S ∪ {v} is linearly dependent.
Then there are vectors v1, ..., vn ∈ S and scalars a0, a1, ..., an, not all zero,
such that a0v + a1v1 + a2v2 + ...anvn = 0.

First note that a0 6= 0. For otherwise, we would have that a0v + a1v1 +
a2v2 + ...+ anvn = 0, with a1, ..., an, not all zero but that is a contradiction
with S linearly independent.

We have

a0v = −a1v1 − a2v2 + ...− anvn,
and since a0 6= 0, then

v = −a1
a0
v1 −

a2
a0
v2 + ...− an

a0
vn.

It follows that v ∈ span(S).
For the other direction, suppose that v ∈ span(S). Then for some scalars

a1, ..., an and vectors v1, ..., vn in S,

v = a1v1 + ...+ anvn.

Then

1v − a1v1 − ...− anvn = 0,

and since the coefficient for v is 1, which is nonzero, this means that {v, v1, ..., vn}
are linearly dependent. Then S ∪ {v} is linearly dependent. �
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Section 1.6 Bases and Dimension

Definition 6. Suppose that β ⊂ V , for a vector space V . We say that β is
a basis for V iff

(1) Span(β) = V ,
(2) β is linearly independent.

Examples:

(1) {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for R3.
(2) {(1, 0, 0), (0, 1, 1), (−2, 0, 1)} is a basis for R3.
(3) More generally, {e1, ..., en} is a basis for Fn.
(4) {1, x, x2} is a basis for P2(F ).
(5) {1, x, x2, ..., xn, ...} is a basis for P (F ).

Lemma 7. β = {u1, ..., un} is a basis for V iff each vector x ∈ V can be
uniquely expressed as a linear combinations of the vectors in β.

Proof. For the first direction, suppose that β is a basis. Then by definition,
each vector can be expressed as a linear combinations of the vectors in β.
So, we just have to prove uniqueness. To that end, let x ∈ V and suppose
that for some scalars a1, ..., an, b1, ..., bn,

• x = a1u1 + ...+ anun, and
• x = b1u1 + ...+ bnun.

We have to show that a1 = b1, a2 = b2, ..., an = bn. By subtracting the two
equalities, we get that:

a1u1 + ...+ anun − (b1u1 + ...+ bnun) = ~0.

By distributing and reordering the terms, we get that

(a1 − b1)u1 + (a2 − b2)u2 + ...+ (an − bn)un = ~0.

But then since β is linearly independent, we have

(a1 − b1) = (a2 − b2) = ... = (an − bn) = 0.

So a1 = b1, a2 = b2, ..., an = bn.
For the other direction, suppose that each vector x ∈ V can be uniquely

expressed as a linear combinations of the vectors in β. We have to show
that β is a basis. We are already given by assumption that Span(β) = V .
So we have to show that β is linearly independent. To that end, suppose
that for some scalars a1, ..., an,

a1u1 + ...+ anun = ~0.

But we also have that 0u1 + ...+ 0un = ~0. Since ~0 is uniquely expressed as
a linear combination of vectors in β, it follows that a1 = 0, a2 = 0, ..., an =
0. �

Next we want to define the dimension of a vector space V . The dimen-
sion of V will be the size of a basis for V . But for this notion to be well
defined, we need two things:
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(1) each vector space has a basis, and
(2) if β, γ are two bases for V , then they have the same size.


