MATH 320 NOTES, WEEK 3

Recall: Span(S) is the set of all linear combinations of vectors in S.

Examples:

(1) $Span(\{\langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle\}) = \{\langle a, b, 0 \rangle \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\};\$

(2) $Span(\{\langle 1,0,0\rangle,\langle 0,1,0\rangle,\langle 5,11,0\rangle\}) = \{\langle a,b,0\rangle \in \mathbb{R}^3 \mid a,b \in \mathbb{R}\};$ Note that $Span(\{\langle 1,0,0\rangle,\langle 0,1,0\rangle\}) = Span(\{\langle 1,0,0\rangle,\langle 0,1,0\rangle,\langle 5,11,0\rangle\}),$ since $\langle 5,11,0\rangle \in Span(\{\langle 1,0,0\rangle,\langle 0,1,0\rangle\})$. I.e. the vectors $\{\langle 1,0,0\rangle,\langle 0,1,0\rangle,\langle 5,11,0\rangle\}$ are linearly dependent.

Section 1.5 Linear Dependence and Independence.

Let V be a vector space over a field F and $S \subset V$.

Definition 1. S is **linearly dependent** iff there are vectors $v_1, ..., v_n$ in S and scalars $a_1, ..., a_n$ not all zero such that

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0.$$

Definition 2. S is linearly independent iff whenever

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$$

for vectors $v_1, ..., v_n$ in S and scalars $a_1, ..., a_n$, then $a_1 = a_2 = ... a_n = 0$.

Note that the empty set \emptyset is linearly independent.

Examples:

- (1) In \mathbb{R}^3 , the set $\{(1,1,1), (2,-1,0), (4,1,2)\}$ is linearly dependent since 2(1,1,1) + (2,-1,0) - (4,1,2) = (0,0,0).
- (2) In \mathbb{R}^3 , the set $\{(1,0,0), (0,1,1), (0,1,2)\}$ is linearly independent.
- (3) In P(F), the set $\{1, x, x^2, ..., x^n, ...\}$ is linearly independent.
- (4) In F^n , the set $\{e_1, ..., e_n\}$ is linearly independent, and in $M_{k,n}(F)$, the set $\{E_{ij} \mid 1 \le i \le k, 1 \le j \le n\}$ is linearly independent.

Problem. Prove that in $P_2(F)$, the set $\{1+2x+x^2, 1+x, 1+x^2\}$ is linearly independent.

Proof. Suppose that $a(1+2x+x^2)+b(1+x)+c(1+x^2) = \vec{0}$. Then, regrouping the terms on the left hand side, we get $(a+b+c)+(2a+b)x+(a+c)x^2 = \vec{0}$. So,

- a+b+c=0,
- 2a+b=0,

• a + c = 0

Solving this system, we get that a = b = c = 0.

Remark 3. Let V be a vector space and $S_1 \subset S_2 \subset V$.

- (1) If S_1 is linearly dependent, then S_2 is linearly dependent.
- (2) If S_2 is linearly independent, then S_1 is linearly independent.

Also note that:

- (1) If $x \neq \vec{0}$, then $\{x\}$ is linearly independent.
- (2) $\{\vec{0}\}$ is linearly dependent, since $1\vec{0} = \vec{0}$.
- (3) If $\vec{0} \in S$, then S is linearly dependent.

Now let us look at the cases of two vectors and then of three vectors:

Lemma 4. Let x, y, z be all nonzero vectors. Then

- (1) $\{x, y\}$ are linearly dependent iff they are multiples of each other. I.e. x = cy for some scalar c. (The proof will be on the homework)
- (2) $\{x, y, z\}$ are linearly dependent iff x and y are multiples of each other or z = ax + by for some scalars a, b.

Theorem 5. Suppose that S is linearly independent. Then $S \cup \{v\}$ is linearly dependent iff $v \in span(S)$.

Proof. For the first direction, suppose that $S \cup \{v\}$ is linearly dependent. Then there are vectors $v_1, ..., v_n \in S$ and scalars $a_0, a_1, ..., a_n$, not all zero, such that $a_0v + a_1v_1 + a_2v_2 + ... a_nv_n = 0$.

First note that $a_0 \neq 0$. For otherwise, we would have that $a_0v + a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0$, with a_1, \ldots, a_n , not all zero but that is a contradiction with S linearly independent.

We have

$$a_0v = -a_1v_1 - a_2v_2 + \dots - a_nv_n,$$

and since $a_0 \neq 0$, then

$$v = -\frac{a_1}{a_0}v_1 - \frac{a_2}{a_0}v_2 + \dots - \frac{a_n}{a_0}v_n$$

It follows that $v \in span(S)$.

For the other direction, suppose that $v \in span(S)$. Then for some scalars $a_1, ..., a_n$ and vectors $v_1, ..., v_n$ in S,

$$v = a_1 v_1 + \dots + a_n v_n.$$

Then

$$1v - a_1v_1 - \dots - a_nv_n = 0$$

and since the coefficient for v is 1, which is nonzero, this means that $\{v, v_1, ..., v_n\}$ are linearly dependent. Then $S \cup \{v\}$ is linearly dependent. \Box

Section 1.6 Bases and Dimension

Definition 6. Suppose that $\beta \subset V$, for a vector space V. We say that β is a basis for V iff

(1) $Span(\beta) = V$,

(2) β is linearly independent.

Examples:

- (1) $\{(1,0,0), (0,1,0), (0,0,1)\}$ is a basis for \mathbb{R}^3 .
- (2) $\{(1,0,0), (0,1,1), (-2,0,1)\}$ is a basis for \mathbb{R}^3 .
- (3) More generally, $\{e_1, ..., e_n\}$ is a basis for F^n .
- (4) $\{1, x, x^2\}$ is a basis for $P_2(F)$.
- (5) $\{1, x, x^2, ..., x^n, ...\}$ is a basis for P(F).

Lemma 7. $\beta = \{u_1, ..., u_n\}$ is a basis for V iff each vector $x \in V$ can be uniquely expressed as a linear combinations of the vectors in β .

Proof. For the first direction, suppose that β is a basis. Then by definition, each vector can be expressed as a linear combinations of the vectors in β . So, we just have to prove uniqueness. To that end, let $x \in V$ and suppose that for some scalars $a_1, ..., a_n, b_1, ..., b_n$,

- $x = a_1 u_1 + \dots + a_n u_n$, and
- $x = b_1 u_1 + \ldots + b_n u_n$.

We have to show that $a_1 = b_1$, $a_2 = b_2$, ..., $a_n = b_n$. By subtracting the two equalities, we get that:

$$a_1u_1 + \ldots + a_nu_n - (b_1u_1 + \ldots + b_nu_n) = \vec{0}.$$

By distributing and reordering the terms, we get that

$$(a_1 - b_1)u_1 + (a_2 - b_2)u_2 + \dots + (a_n - b_n)u_n = 0.$$

But then since β is linearly independent, we have

$$(a_1 - b_1) = (a_2 - b_2) = \dots = (a_n - b_n) = 0.$$

So $a_1 = b_1$, $a_2 = b_2$, ..., $a_n = b_n$.

For the other direction, suppose that each vector $x \in V$ can be uniquely expressed as a linear combinations of the vectors in β . We have to show that β is a basis. We are already given by assumption that $Span(\beta) = V$. So we have to show that β is linearly independent. To that end, suppose that for some scalars $a_1, ..., a_n$,

$$a_1u_1 + \dots + a_nu_n = 0.$$

But we also have that $0u_1 + ... + 0u_n = \vec{0}$. Since $\vec{0}$ is uniquely expressed as a linear combination of vectors in β , it follows that $a_1 = 0, a_2 = 0, ..., a_n = 0$.

Next we want to define **the dimension** of a vector space V. The dimension of V will be the size of a basis for V. But for this notion to be well defined, we need two things:

- each vector space has a basis, and
 if β, γ are two bases for V, then they have the same size.